This repository has been archived on 2025-02-02. You can view files and clone it, but cannot push or open issues or pull requests.
Files_for_MM/relation-plot.py
2025-01-26 01:12:57 +08:00

49 lines
1.4 KiB
Python

import json
import numpy as np
import matplotlib.pyplot as plt
colorList = json.load(open('color/config.json','r'))["color"]
import csv
data_pasg = {}
data_temp = {}
with open('data/passenger.csv', 'r') as f:
reader = csv.reader(f)
header = next(reader)
for row in reader:
data_pasg[row[0]] = np.array(row[1:],dtype=float)
with open('data/temperature.csv', 'r') as f:
reader = csv.reader(f)
header = next(reader)
for row in reader:
data_temp[row[0]] = np.array(row[1:],dtype=float)
xList = np.array([])
yList = np.array([])
for year in range(2014,2024):
plt.scatter(data_pasg[str(year)][0], data_temp[str(year)][2], color=colorList[0])
xList = np.append(xList,data_pasg[str(year)][0])
yList = np.append(yList,data_temp[str(year)][2])
from scipy.optimize import curve_fit
def linear(x,k,b):
return k*x+b
valk,valb = curve_fit(linear,xList,yList)[0]
residuals = yList - linear(xList,valk,valb)
ss_res = np.sum(residuals**2)
ss_tot = np.sum((yList-np.mean(yList))**2)
r_squared = 1 - (ss_res / ss_tot)
print("R-squared:", r_squared)
plt.plot(np.arange(0,80000,1000),linear(np.arange(0,80000,1000),valk,valb),color=colorList[1])
plt.xlabel('Passenger')
plt.ylabel('SnowFall')
plt.title('Relation between Passenger and SnowFall')
plt.text( 60000, 110, "k = %f\nb = %f\nR^2 = %f"%(valk,valb,r_squared),color=colorList[1])
# plt.show()
plt.savefig('result/relation-plot0.png')