version1 is stabled
This commit is contained in:
parent
fe228a1b93
commit
0868ed487e
63
optimizerO-series.py
Normal file
63
optimizerO-series.py
Normal file
@ -0,0 +1,63 @@
|
|||||||
|
import numpy as np
|
||||||
|
import json
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
colorList = json.load(open('color/config.json','r'))["color_pool"]
|
||||||
|
|
||||||
|
psgRange=np.arange(1e6,5e6,1e5)
|
||||||
|
|
||||||
|
prediction = 2433827
|
||||||
|
taxShift=0.03
|
||||||
|
torShift=1-0.054
|
||||||
|
curTaxationRate=1.0
|
||||||
|
temp1 = np.log(prediction/(torShift**(curTaxationRate/taxShift)))
|
||||||
|
temp2 = np.log(torShift)
|
||||||
|
def tax(x):
|
||||||
|
return taxShift*(np.log(x)-temp1)/temp2
|
||||||
|
def predictTotalPassengers(taxationRate):
|
||||||
|
return (prediction/(torShift**(curTaxationRate/taxShift)))*(torShift**(taxationRate/taxShift))
|
||||||
|
RNGk = 37.648854
|
||||||
|
RNGb = 59397421.185785
|
||||||
|
temp3=(curTaxationRate*(RNGk*(predictTotalPassengers(curTaxationRate))+RNGb))
|
||||||
|
def f1(x):
|
||||||
|
return 5*((tax(x))*(RNGk*x+RNGb) / temp3 -1)+1
|
||||||
|
|
||||||
|
C2=1
|
||||||
|
Cb2=1e8
|
||||||
|
def f2(x):
|
||||||
|
return 1 - C2*x/Cb2 - 0.2
|
||||||
|
|
||||||
|
C3=1
|
||||||
|
Cb3=4e8
|
||||||
|
def f3(x):
|
||||||
|
return 1 - C3*x/Cb3
|
||||||
|
|
||||||
|
influenceFactor = np.array([0.21061,0.54848,0.24091])
|
||||||
|
def f(x):
|
||||||
|
return f1(x)*influenceFactor[0] + f2(x)*influenceFactor[1] + f3(x)*influenceFactor[2]
|
||||||
|
|
||||||
|
|
||||||
|
from scipy.optimize import minimize_scalar
|
||||||
|
|
||||||
|
result = minimize_scalar(lambda x: -f(x),bounds=(np.min(psgRange),np.max(psgRange)),method='bounded')
|
||||||
|
print(result)
|
||||||
|
|
||||||
|
for i in range(10):
|
||||||
|
C3=i*5
|
||||||
|
plt.plot(psgRange,f(psgRange),label='result, C3=%d'%C3,color=colorList[i])
|
||||||
|
# plt.plot(psgRange,f1(psgRange),label='Ieco',color=colorList[1])
|
||||||
|
# plt.plot(psgRange,f2(psgRange),label='Ienv',color=colorList[2])
|
||||||
|
# plt.plot(psgRange,f3(psgRange),label='Isoc',color=colorList[3])
|
||||||
|
result = minimize_scalar(lambda x: -f(x),bounds=(np.min(psgRange),np.max(psgRange)),method='bounded')
|
||||||
|
plt.plot(result.x,f(result.x),'o',color=colorList[i])
|
||||||
|
print(result.x,tax(result.x),f(result.x))
|
||||||
|
|
||||||
|
plt.xlabel('total passengers')
|
||||||
|
plt.ylabel('Optimized objective function')
|
||||||
|
plt.legend(fontsize=8)
|
||||||
|
plt.savefig('result/O-ser1.png',dpi=1024,)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
print("Optimal total passengers:",result.x)
|
||||||
|
print("Optimal taxation rate:",tax(result.x))
|
||||||
|
print("Score",f(result.x))
|
||||||
24
stability-plot.py
Normal file
24
stability-plot.py
Normal file
@ -0,0 +1,24 @@
|
|||||||
|
import json
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
colorList = json.load(open('color/config.json','r'))["color"]
|
||||||
|
|
||||||
|
import csv
|
||||||
|
|
||||||
|
with open('stability.csv', 'r') as f:
|
||||||
|
reader = csv.reader(f)
|
||||||
|
header = next(reader)
|
||||||
|
# next(reader)
|
||||||
|
data = [row for row in reader]
|
||||||
|
|
||||||
|
plt.figure(figsize=(6,5))
|
||||||
|
plt.bar(range(len(data)), [np.log(np.abs(float(row[2]))) for row in data] , color=colorList[0])
|
||||||
|
plt.plot([-1,len(data)],[0,0],color=colorList[2]) # x axis
|
||||||
|
plt.margins(0.01)
|
||||||
|
plt.xticks(range(0,len(data)), [row[3] for row in data], rotation=45)
|
||||||
|
plt.xlabel('Parameters abbr.',labelpad=-3)
|
||||||
|
plt.ylabel('Affect on Stability (log scale)')
|
||||||
|
plt.title('Different Parameters\'s Affect on Stability')
|
||||||
|
plt.savefig('result/stability-result.png',dpi=1024)
|
||||||
|
plt.show()
|
||||||
12
stability.csv
Normal file
12
stability.csv
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
name,algorithm,gradient
|
||||||
|
Tax influences tourists,torShift**(1/taxShift),-38049184.08,TIT
|
||||||
|
Passenger influence on revenue,the slope of the passenger-revenue relation curve,87730.21866,R-K
|
||||||
|
Initial revenue,the interception of the passenger-revenue relation curve,-0.052009008,R-B
|
||||||
|
Carbon footprint per person,C2,-230200.9189,Cpi
|
||||||
|
Total Carbon footprint,Cb2,0.002691839,SCpi
|
||||||
|
social effect per person,C3,-24062.72963,Spi
|
||||||
|
maximum social effect bearage,Cb3,7.12E-05,SSpi
|
||||||
|
iceberg contribution,iceberg,0.001602255,IC
|
||||||
|
influence factor for ecomomy,influenceFactor[0],1574163.139,Weco
|
||||||
|
influence factor for environment,influenceFactor[1],-432635.705,Wenv
|
||||||
|
influence factor for society,influenceFactor[2],-100327.8061,Wsoc
|
||||||
|
62
stabilityO.py
Normal file
62
stabilityO.py
Normal file
@ -0,0 +1,62 @@
|
|||||||
|
import numpy as np
|
||||||
|
import json
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
colorList = json.load(open('color/config.json','r'))["color"]
|
||||||
|
|
||||||
|
psgRange=np.arange(1e6,5e6,1e5,dtype=np.float64)
|
||||||
|
|
||||||
|
prediction = 2433827
|
||||||
|
taxShift=0.03
|
||||||
|
torShift=1-0.054
|
||||||
|
curTaxationRate=1.0
|
||||||
|
def tax(x):
|
||||||
|
temp1 = np.log(prediction/(torShift**(curTaxationRate/taxShift)))
|
||||||
|
temp2 = np.log(torShift)
|
||||||
|
return taxShift*(np.log(x)-temp1)/temp2
|
||||||
|
def predictTotalPassengers(taxationRate):
|
||||||
|
return (prediction/(torShift**(curTaxationRate/taxShift)))*(torShift**(taxationRate/taxShift))
|
||||||
|
RNGk = 37.648854
|
||||||
|
RNGb = 59397421.185785
|
||||||
|
def f1(x):
|
||||||
|
temp3=(curTaxationRate*(RNGk*(predictTotalPassengers(curTaxationRate))+RNGb))
|
||||||
|
return 5*((tax(x))*(RNGk*x+RNGb) / temp3 -1)+1
|
||||||
|
|
||||||
|
C2=1
|
||||||
|
Cb2=1e8
|
||||||
|
iceberg = -0.2
|
||||||
|
def f2(x):
|
||||||
|
return 1 - C2*x/Cb2 + iceberg
|
||||||
|
|
||||||
|
C3=1
|
||||||
|
Cb3=4e8
|
||||||
|
def f3(x):
|
||||||
|
return 1 - C3*x/Cb3
|
||||||
|
|
||||||
|
influenceFactor = np.array([0.21061,0.54848,0.24091],dtype=np.float64)
|
||||||
|
def f(x):
|
||||||
|
return f1(x)*influenceFactor[0] + f2(x)*influenceFactor[1] + f3(x)*influenceFactor[2]
|
||||||
|
|
||||||
|
|
||||||
|
from scipy.optimize import minimize_scalar
|
||||||
|
|
||||||
|
result = minimize_scalar(lambda x: -f(x),bounds=(np.min(psgRange),np.max(psgRange)),method='bounded')
|
||||||
|
plt.plot(psgRange,f(psgRange),color=colorList[0],label='case 0')
|
||||||
|
|
||||||
|
cur_x = iceberg
|
||||||
|
cur_y = result.x
|
||||||
|
tag = 1e-10
|
||||||
|
alt_x = iceberg
|
||||||
|
alt_y = minimize_scalar(lambda x: -f(x),bounds=(np.min(psgRange),np.max(psgRange)),method='bounded').x
|
||||||
|
while abs(alt_y-cur_y)<10:
|
||||||
|
iceberg += tag
|
||||||
|
alt_x = iceberg
|
||||||
|
alt_y = minimize_scalar(lambda x: -f(x),bounds=(np.min(psgRange),np.max(psgRange)),method='bounded').x
|
||||||
|
tag *= 2
|
||||||
|
|
||||||
|
plt.plot(psgRange,f(psgRange),color=colorList[1],label='case 1')
|
||||||
|
|
||||||
|
plt.legend()
|
||||||
|
plt.show()
|
||||||
|
print(cur_x,cur_y,alt_x,alt_y)
|
||||||
|
print((alt_y-cur_y)/(alt_x-cur_x))
|
||||||
Reference in New Issue
Block a user