model1-version1-complete

This commit is contained in:
zjcOvO 2025-01-26 17:26:49 +08:00
parent e261b9e981
commit fe228a1b93
10 changed files with 256 additions and 4 deletions

13
AHPMethod.py Normal file
View File

@ -0,0 +1,13 @@
from AHP import AHP
import numpy as np
criteria=np.array([
[],
[],
[]
])
max_eigen,CR,criteria_eigen=AHP(criteria,np.array([[0]])).cal_weights(criteria)
print()
print(max_eigen,CR,criteria_eigen)

View File

@ -0,0 +1,25 @@
import csv
import numpy as np
data={}
with open('data/passenger.csv', 'r', encoding='utf-8') as f:
reader = csv.reader(f)
next(reader) # skip header row
for row in reader:
data[int(row[0])] = np.sum(np.array(row[1:4], dtype=int))
dataList = []
for i in range(2015,2020):
# print(data[i]/data[i-1])
dataList.append(data[i]/data[i-1])
# print(data[2023]/data[2022])
dataList.append(data[2023]/data[2022])
dataList = np.array(dataList)
avgGrowth = np.mean(dataList)
prediction = data[2023]*((avgGrowth)**(2025-2023))
print("predicting 2025 total passengers when maintaining current taxation rate:",prediction)
def predictTotalPassengers(taxationRate):
return (prediction/(0.946**(1.09/0.1)))*(0.946**(taxationRate/0.1))

View File

@ -12,7 +12,7 @@ p2=25
p3=25
cp=500
c=15
cmax=8000/0.2
cmax=400
cb=200
m=0.01
r=0.85
@ -50,4 +50,10 @@ plt.xlabel('x')
plt.ylabel('f(x)')
plt.legend()
plt.savefig('result/optimized1.png')
plt.show()
plt.show()
from scipy.optimize import minimize
res = minimize(lambda x: -f(x), 0.2)
print(res)
print(res.x,f(res.x))

64
optimizerIeco.py Normal file
View File

@ -0,0 +1,64 @@
import csv
import numpy as np
import json
import matplotlib.pyplot as plt
colorList = json.load(open('color/config.json','r'))["color"]
data={}
with open('data/passenger.csv', 'r', encoding='utf-8') as f:
reader = csv.reader(f)
next(reader) # skip header row
for row in reader:
data[int(row[0])] = np.sum(np.array(row[1:4], dtype=int))
dataList = []
for i in range(2015,2020):
# print(data[i]/data[i-1])
dataList.append(data[i]/data[i-1])
# print(data[2023]/data[2022])
dataList.append(data[2023]/data[2022])
dataList = np.array(dataList)
avgGrowth = np.mean(dataList)
prediction = data[2023]*((avgGrowth)**(2025-2023))
print("predicting 2025 total passengers when maintaining current taxation rate:",prediction)
taxShift=0.03
torShift=1-0.054
curTaxationRate=1.0
def predictTotalPassengers(taxationRate):
return (prediction/(torShift**(curTaxationRate/taxShift)))*(torShift**(taxationRate/taxShift))
temp1 = np.log(prediction/(torShift**(curTaxationRate/taxShift)))
temp2 = np.log(torShift)
def tax(x):
return taxShift*(np.log(x)-temp1)/temp2
RNGk = 37.648854
RNGb = 59397421.185785
temp3=(curTaxationRate*(RNGk*(predictTotalPassengers(curTaxationRate))+RNGb))
def f1(x):
return 5*((tax(x))*(RNGk*x+RNGb) / temp3 -1)+1
psgRange = predictTotalPassengers(np.arange(0.6,1.4,0.01))
from scipy.optimize import minimize_scalar
result = minimize_scalar(lambda x: -f1(x),bounds=(np.min(psgRange),np.max(psgRange)),method='bounded')
print(result)
plt.plot(psgRange,f1(psgRange),label='Ieco',color=colorList[0])
plt.plot(psgRange,tax(psgRange),label='tax(x)',color=colorList[1])
plt.xlabel('total passengers')
plt.ylabel('Ieco / taxation rate')
plt.plot(predictTotalPassengers(1),1,'o',label='maintain taxation rate',color=colorList[2])
plt.plot(result.x,f1(result.x),'o',label='optimal for Ieco',color=colorList[3])
plt.legend()
plt.savefig('result/taxation-and-f1.png')
plt.show()

19
optimizerIenv.py Normal file
View File

@ -0,0 +1,19 @@
C=1
Cb=1e7
def f2(x):
return 1 - C*x/Cb
import numpy as np
import json
import matplotlib.pyplot as plt
colorList = json.load(open('color/config.json','r'))["color"]
plt.plot(np.arange(1e6,5e6,1e5),f2(np.arange(1e6,5e6,1e5)),label='Ienv',color=colorList[0])
plt.xlabel('total passengers')
plt.ylabel('Ienv')
plt.legend()
plt.show()

19
optimizerIsoc.py Normal file
View File

@ -0,0 +1,19 @@
C=1
Cb=1e7
def f3(x):
return 1 - C*x/Cb
import numpy as np
import json
import matplotlib.pyplot as plt
colorList = json.load(open('color/config.json','r'))["color"]
plt.plot(np.arange(1e6,5e6,1e5),f3(np.arange(1e6,5e6,1e5)),label='Isoc',color=colorList[0])
plt.xlabel('total passengers')
plt.ylabel('Isoc')
plt.legend()
plt.show()

59
optimizerO.py Normal file
View File

@ -0,0 +1,59 @@
import numpy as np
import json
import matplotlib.pyplot as plt
colorList = json.load(open('color/config.json','r'))["color"]
psgRange=np.arange(1e6,5e6,1e5)
prediction = 2433827
taxShift=0.03
torShift=1-0.054
curTaxationRate=1.0
temp1 = np.log(prediction/(torShift**(curTaxationRate/taxShift)))
temp2 = np.log(torShift)
def tax(x):
return taxShift*(np.log(x)-temp1)/temp2
def predictTotalPassengers(taxationRate):
return (prediction/(torShift**(curTaxationRate/taxShift)))*(torShift**(taxationRate/taxShift))
RNGk = 37.648854
RNGb = 59397421.185785
temp3=(curTaxationRate*(RNGk*(predictTotalPassengers(curTaxationRate))+RNGb))
def f1(x):
return 5*((tax(x))*(RNGk*x+RNGb) / temp3 -1)+1
C2=1
Cb2=1e8
def f2(x):
return 1 - C2*x/Cb2 - 0.2
C3=1
Cb3=4e8
def f3(x):
return 1 - C3*x/Cb3
influenceFactor = np.array([0.21061,0.54848,0.24091])
def f(x):
return f1(x)*influenceFactor[0] + f2(x)*influenceFactor[1] + f3(x)*influenceFactor[2]
from scipy.optimize import minimize_scalar
result = minimize_scalar(lambda x: -f(x),bounds=(np.min(psgRange),np.max(psgRange)),method='bounded')
print(result)
plt.plot(psgRange,f(psgRange),label='result',color=colorList[0])
plt.plot(psgRange,f1(psgRange),label='Ieco',color=colorList[1])
plt.plot(psgRange,f2(psgRange),label='Ienv',color=colorList[2])
plt.plot(psgRange,f3(psgRange),label='Isoc',color=colorList[3])
plt.plot(result.x,f(result.x),'o',label='optimal',color=colorList[4])
plt.xlabel('total passengers')
plt.ylabel('Optimized objective function')
plt.legend()
plt.savefig('result/O.png')
plt.show()
print("Optimal total passengers:",result.x)
print("Optimal taxation rate:",tax(result.x))
print("Score",f(result.x))

View File

@ -0,0 +1,47 @@
import json
import numpy as np
import matplotlib.pyplot as plt
colorList = json.load(open('color/config.json','r'))["color"]
import csv
data_pasg = {}
data_temp = {}
with open('data/passenger.csv', 'r') as f:
reader = csv.reader(f)
header = next(reader)
data = [row for row in reader]
data = np.array(data).astype(float).T
data[0]=data[0].astype(int)
xList=data[1]+data[2]+data[3]
yList=np.full(np.shape(data[6])[0],0)
for i in range(1,np.shape(data[6])[0]):
yList[i]=data[6][i]-data[6][i-1]
print(yList)
plt.scatter(xList[1:],yList[1:],color=colorList[0])
from scipy.optimize import curve_fit
def linear(x,k,b):
return k*x+b
valk,valb = curve_fit(linear,xList,yList)[0]
residuals = yList - linear(xList,valk,valb)
ss_res = np.sum(residuals**2)
ss_tot = np.sum((yList-np.mean(yList))**2)
r_squared = 1 - (ss_res / ss_tot)
print("R-squared:", r_squared)
plt.plot(np.arange(0,2.5e6,1e5),linear(np.arange(0,2.5e6,1e5),valk,valb),color=colorList[1])
plt.xlabel('Passenger')
plt.ylabel('Local Population Decline')
plt.title('Relation between Passenger and Local Population Decline')
plt.text( 60000, 110, "k = %f\nb = %f\nR^2 = %f"%(valk,valb,r_squared),color=colorList[1])
plt.savefig('result/passenger-and-locals-relation.png')
plt.show()

View File

@ -42,5 +42,5 @@ plt.xlabel('Total Passengers')
plt.ylabel('Total Revenue')
plt.legend()
plt.title('Passenger-Revenue Relation')
plt.savefig('result/passenger-and-revenue-relation.png')
plt.savefig('result/passenger-and-revenue-relation.png',dpi=1024)
plt.show()

View File

@ -30,5 +30,5 @@ ax2.plot(data[0],data[5], label=header[5], color=colorList[4])
ax2.set_ylabel('Revenue')
plt.legend(loc='upper right')
plt.title('Passenger and Revenue Yearly')
plt.savefig('result/passenger-and-revenue.png')
plt.savefig('result/passenger-and-revenue.png',dpi=1024)
plt.show()